STRUCTURAL RELATEDNESS BETWEEN HUMAN LACTOTRANSFERRIN AND HUMAN CERULOPLASMIN

M.-H. METZ-BOUTIGUE, J. JOLLÈS, J. MAZURIER*, G. SPIK*, J. MONTREUIL* and P. JOLLÈS+

Laboratoire des Protéines, Universités de Paris V et VI, 45 rue des Saints-Pères, 75270 Paris Cedex 06 and *Laboratoire de Chimie Biologique et Laboratoire associé au C.N.R.S. no. 217, Université des Sciences et Techniques de Lille-I, 59655 Villeneuve d'Ascq Cedex, France

Received 28 July 1981

1. Introduction

Lactotransferrin, also called lactoferrin, from human milk is a glycoprotein of $M_{\rm r}=76\,500$ constituted of a single polypeptide chain to which two carbohydrate groups are attached (review [1]). We have described 70% of the sequence of human lactotransferrin and pointed out a 6-fold internal homology [2]. In [3], 564 residues of the amino acid sequence of the single polypeptide chain of human ceruloplasmin (Cp, EC 1.16.3.1) of $M_{\rm r}=130\,000$ were aligned. The comparison of the sequences allowed us to establish:

- (i) A remarkable sequence homology between the two glycoproteins;
- (ii) A similarity concerning their internal replication;
- (iii) A homology between fragments containing the copper binding site(s) of ceruloplasmin and fragments of lactotransferrin.

Some of these homologies were also found when human serum transferrin (STF) was compared to ceruloplasmin.

2. Methods, results and discussion

2.1. Sequence homologies between human transferrins (lactotransferrin and serum transferrin) and human ceruloplasmin

Table 1 indicates some homologies between fragments of LTF [2], STF [4,5] and human ceruloplasmin (Cp 50-kDa, Cp 19-kDa) [3]. Several strong

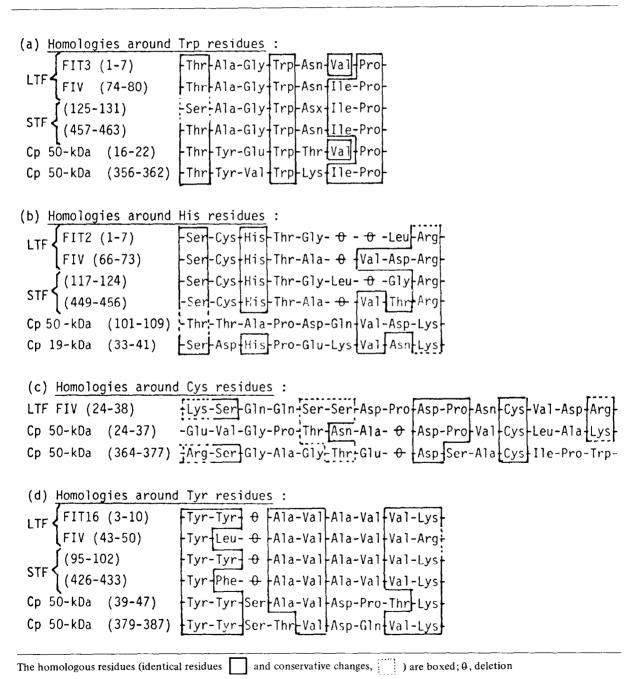
Abbreviations: Cp, human ceruloplasmin; LTF, human lactotransferrin; STF, human serum transferrin; kDa, kilodalton(s) homologies were observed around the structural important half-cystine residues (c), as well as around tryptophan (a), histidine (b) and tyrosine residues (d) (table 1).

2.2. Internal homology of LTF and Cp and evolution of possible precursor genes

Recent results concerning the alignment of 445 residues of the amino acid sequence of LTF [2] allowed one to suggest a 6-fold internal homology beside the internal homology, resulting from the duplication of an ancestral gene [6]. The occurrence of basic N-terminal sequences and the alignment of half-cystine, tryptophan, histidine and basic amino acid residues should more particularly be pointed out. We suggest that the molecule evolved from a protein of 1/6th its present size, as a result of evolution of an ancestral structural gene. We noted a similar situation in the case of STF.

Human Cp resulted from the alignment of 3 fragments Cp 67-kDa, Cp 50-kDa and Cp 19-kDa which were obtained spontaneously after cleavage by proteolytic enzymes [7]. With the recent completion of the primary structures of the Cp 50-kDa [7] and the Cp 19-kDa [8–10] fragments arising from the C-terminus, a remarkable degree of internal homology in Cp was identified.

Incomplete sequence data obtained for the N-terminal Cp 67-kDa fragment indicated that it has also strong homology with the C-terminal half of Cp. Thus, the model for the evolution of the gene for Cp in [3] is based on the internal homology of this protein and on its homology to other copper-binding proteins. In this model, a primordial gene coding for an azurin-type protein of ~160 amino acids was fused


⁺ To whom correspondence should be addressed

to a gene coding for a protein of ~190 amino acids, and a triplication of this ancestral fused gene could give rise to the present day gene for Cp. This model

predicts that the complete sequence of human ceruloplasmin will exhibit a 3-fold repeat pattern of two alternating structures.

Table 1

Examples of sequence homology between human lactotransferrin (LTF) [2], serum transferrin (STF) [4,5] and ceruloplasmin (Cp) [3]

Homology of the type 1 copper binding site of Pseudomonas aeruginosa azurin (Az) [11], Anabaena variabilis plastocyanin (Pl) [12] and Cp 19-kDa and Cp 50-kDa fragments of STF 14 51 and UTF 12]

	12, 12, 12, 4.61 residues → -Tyr-Met-Phe-Phe-Cys-Thr-Phe- θ - θ - θ - Pro-Gly-His-Ser- θ - θ - Ala-Leu-Met-Phet-	Met-Phe-Phe-	112 * -Cys-Thr-Phe- (0 - 0 - t	-Pro-Gly	117 His-Ser	0 -	θ -Ala-Leu	121 * Met-
	** -His-+ 45 residues + -Tyr-Thr-Phe-Tyr-Cys-Glu- 0 - 0	.Thr-Phe-Tyr-	.cys-Glu- 0 - 4	1	-Pro-0	4. His-Arg] -Gly- Q -	θ - θ - Pro- θ - His-Arg-Gly- θ - θ - Ala-Gly-Met-	9.7 -Met
Cp 50-kDa	156 -His-+38 residues +-Phe-Asn-Val-Glu-Cys+Leu-Thr- 0	Asn-Val-Glu-	.Cys+Leu-Thr-	1	-Thr-Asp	204 His-Tyr	-Thr- 4 -	θ - θ -Thr-Asp+His+Tyr-Thr- θ - θ -Gly-Gly-Met-	209 -Met-
Cp 19-kDa	88 -His-← 41 residues → -Trp-Leu-Leu-His-Cys-His-Val- ⊕	-Leu-Leu-His-	.Cys-His-Val- 4	ı	-Thr-Asp	139 His-Ile	-His- 🛈 -	θ - θ -Thr-Asp-His+Ile-His- θ - θ -Ala-Gly-Met-	144 -Met-
STF (N-terminal moiety)	201 250 257	Tyr-Lys-Asp	242 -Cys-His-Leu-A	la-Glx-Va	1-Pro-Ser-	250 His-Thr	-Val-Val-/	11a-Arg-Ser	257 -Met-
LTF (C-terminal moiety) alignment FII-FVI (2)	$_{t}$ + sequence not yet determined	†	-Cys-His-Leu-Ala-Met-Ala-Pro-Asn His-Ala-Val-Val- 0 -Ser-Arg-Met-	la-Met-Al	a-Pro-Asn	Histala	-Val-Val-	θ -Ser-Arg	-Me t

The homologous residues (identical residues, 🔲 and conservative changes, 🚞) are boxed; θ , deletion; *, amino acid residue implicated in metal binding site

The similarity concerning the internal homology of LTF and Cp should be pointed out. However we suggest a somewhat different model of evolution of a possible precursor gene of human LTF. Indeed the latter contains 2 prosthetic sugar groups situated in quite homologous areas. Thus, the ancestral gene seems to have been submitted to a triplication which was followed by a duplication.

2.3. Homology between fragments containing copper binding sites of human Cp and human LTF sequences

Cp is a large multicopper oxidase and contains six copper ions generally given as two type 1 Cu^{2+} , one type 2 Cu^{2+} and three type 3 Cu^{2+} [3].

Crystallographic structures and amino acid sequences are established for some of the small blue proteins, such as azurin [11] and plastocyanin [12] which contain 1 copper atom/molecule coordinated to cysteines (residues 112 and 89, respectively), histidines (residues 46, 117 and 39, 92, respectively) and methionines (residues 121 and 97, respectively).

The Cp 50-kDa and Cp 19-kDa fragments were proposed [3] to have 3 amino acids (residues Cys 199, His 204, Met 209 and Cys 134, His 139, Met 144, respectively, see table 2) in positions homologous to 3 out of the 4 residues involved in the type 1 copper binding site of azurin [11] and plastocyanin [12]. The comparison of ceruloplasmin and plastocyanin allowed us to suggest that the fourth Cp residue involved in a type 1 copper binding site could be His 156 and His 88 of the Cp 50-kDa and Cp 19-kDa fragments, respectively.

Table 2 presents some points of homology between a type 1 copper-binding site of azurin and plastocyanin and fragments of ceroluplasmin (Cp 19-kDa and 50-kDa) as well as of human transferrins. These homologies allow to suggest that the latter might be implicated in metal binding.

3. Conclusion

The comparison of the sequences of 2 ceruloplas-

min fragments (Cp 19-kDa and Cp 19-kDa corresponding to a total of 564 amino acid residues) and of 70% of the lactotransferrin molecule (445 amino acid residues) allowed us to determine 10 homologous areas including 133 amino acids; 53 out of these 133 residues were identical.

Acknowledgements

This research was supported by CNRS (ER 102 and LA 217) and INSERM (Unité U-116).

References

- [1] Montreuil, J. and Spik, G. (1975) in: Proteins of Iron Storage and Transport in Biochemistry and Medicine (Crichton, R. R. ed) pp. 27-38, Elsevier/North-Holland, Amsterdam, New York.
- [2] Metz-Boutigue, M.-H., Mazurier, J., Jollès, J., Spik, G., Montreuil, J. and Jollès, P. (1981) Biochim. Biophys. Acta 670, 243-254.
- [3] Dwulet, F. E. and Putnam, F. W. (1981) Proc. Natl. Acad. Sci. USA 78, 2805–2809.
- [4] McGillivray, R. T. A., Mendez, E. and Brew, K. (1977) in: Proteins of Iron Metabolism (Brown, E. B. et al. eds) pp. 133-141, Grune and Stratton, New York.
- [5] Lineback-Zins, J. and Brew, K. (1980) J. Biol. Chem. 255, 708-713.
- [6] Metz-Boutigue, M.-H., Jollès, J., Mazurier, J., Spik, G., Montreuil, J. and Jollès, P. (1978) Biochimie 60, 557-561.
- [7] Dwulet, F. E. and Putnam, F. W. (1981) Proc. Natl. Acad. Sci. USA 78, 790-794.
- [8] Kingston, I. B., Kingston, B. L. and Putnam, F. W. (1979) Proc. Natl. Acad. Sci. USA 76, 1668-1672.
- [9] Kingston, I. B., Kingston, B. L. and Putnam, F. W. (1980) J. Biol. Chem. 255, 2878-2885.
- [10] Kingston, I. B., Kingston, B. L. and Putnam, F. W. (1980) J. Biol. Chem. 255, 2886–2896.
- [11] Adman, E. T., Stenkamp, R. E., Sieker, L. C. and Jensen, L. H. (1978) J. Mol. Biol. 123, 35-47.
- [12] Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M. and Venkatappa, M. P. (1978) Nature 272, 319-324.